• <li id="ccaac"></li>
  • <table id="ccaac"><rt id="ccaac"></rt></table>
  • <td id="ccaac"></td>
  • <td id="ccaac"></td>
  • ASTM E2334-09(2013)e2
    在樣本中存在零響應的情況下使用屬性數據設置不符合項的分數或者數值, 或者不符合項的發生率上限置信度

    Standard Practice for Setting an Upper Confidence Bound For a Fraction or Number of Non-Conforming items, or a Rate of Occurrence for Non-conformities, Using Attribute Data, When There is a Zero Response in the Sample


    標準號
    ASTM E2334-09(2013)e2
    發布
    2009年
    發布單位
    美國材料與試驗協會
    替代標準
    ASTM E2334-09(2018)
    當前最新
    ASTM E2334-09(2023)
     
     
    引用標準
    ASTM E1402 ASTM E141 ASTM E1994 ASTM E2586 ASTM E456 ISO 3534-1 ISO 3534-2
    適用范圍

    4.1 In Case 1, the sample is selected from a process or a very large population of interest. The population is essentially unlimited, and each item either has or has not the defined attribute. The population (process) has an unknown fraction of items p (long run average process non-conforming) having the attribute. The sample is a group of n discrete items selected at random from the process or population under consideration, and the attribute is not exhibited in the sample. The objective is to determine an upper confidence bound, pu, for the unknown fraction p whereby one can claim that p pu with some confidence coefficient (probability) C. The binomial distribution is the sampling distribution in this case.

    4.2 In Case 2, a sample of n items is selected at random from a finite lot of N items. Like Case 1, each item either has or has not the defined attribute, and the population has an unknown number, D, of items having the attribute. The sample does not exhibit the attribute. The objective is to determine an upper confidence bound, Du, for the unknown number D, whereby one can claim that D Du with some confidence coefficient (probability) C. The hypergeometric distribution is the sampling distribution in this case.

    4.3 In Case 3, there is a process, but the output is a continuum, such as area (for example, a roll of paper or other material, a field of crop), volume (for example, a volume of liquid or gas), or time (for example, hours, days, quarterly, etc.) The sample size is defined as that portion of the “continuum” sampled, and the defined attribute may occur any number of times over the sampled portion. There is an unknown average rate of occurrence, λ, for the defined attribute over the sampled interval of the continuum that is of interest. The sample does not exhibit the attribute. For a roll of paper this might be blemishes per 100 ft2; for a volume of liquid, microbes per cubic litre; for a field of crop, spores per acre; for a time interval, calls per hour, customers per day or accidents per quarter. The rate, λ, is proportional to the size of the interval of interest. Thus, if λ = 12 blemishes per 100 ft2 of paper, this is equivalent to 1.2 blemishes per 10 ft2 or 30 blemishes per 250 ft......

    “世紀難題”:它們到底平不平行?

    另外, SoftMax Pro 6.5 或更高版本,可以直接進行方差倒數權重設置(Figure 4G)。卡方檢驗方法,參數置信區間設置(Figure 4H)只有‘Weights are Inverse Variances’被選擇情況下才能使用。最佳權重因子設置會保證結果是主要來源于所有變化數據點。...

    【應用攻略】使用Molecular Devices 最新發布SoftMax Pro 7軟件 進行平行線分析和相對活性評價

    另外,SoftMax Pro 6.5或更高版本,可以直接進行方差倒數權重設置(Figure 4G)。卡方檢驗方法,參數置信區間設置(Figure 4H)只有‘Weights are Inverse Variances’被選擇情況下才能使用。最佳權重因子設置會保證結果是主要來源于所有變化數據點。...

    如何繪制一條理想標準曲線

    這里我們不對同方差和異方差進行詳細解釋,只簡單說明一下:最簡單示例就是一元線性回歸,通過X-Y散點圖就可以看出是否存在明顯散點擴大,縮小和復雜型趨勢,如果存在,說明隨機誤差可能存在異方差。下圖給出了X-Y散點圖幾種可能情況,若散點圖隨著X增加,散點圖分布區域變寬、變窄或者出現偏離帶狀區域復雜情況,則認為隨機誤差可能出現了異方差。...

    生化分析儀標準參數設置

    14.2 實際F值  臨床實際工作,儀器諸多因素如波長準確性、半波寬大小、比色杯光徑及磨損與清潔度、溫控準確性、加樣系統狀況等若不符合要求或發生變化都會影響指示物ε值或上述公式相關。因此,應在具體儀器條件下,定期檢查和實際測定指示物ε和系數F值(即儀器實測F值)。  ...





    Copyright ?2007-2022 ANTPEDIA, All Rights Reserved
    京ICP備07018254號 京公網安備1101085018 電信與信息服務業務經營許可證:京ICP證110310號

  • <li id="ccaac"></li>
  • <table id="ccaac"><rt id="ccaac"></rt></table>
  • <td id="ccaac"></td>
  • <td id="ccaac"></td>
  • 床戏视频