5.1 Before proceeding with these test methods, reference should be made to the specification of the material being tested. Any test specimen preparation, conditioning, dimensions, and testing parameters covered in the materials specification shall take precedence over those mentioned in these test methods. If there is no material specification, then the default conditions apply.
5.2 The pendulum impact test indicates the energy to break standard test specimens of specified size under stipulated parameters of specimen mounting, notching, and pendulum velocity-at-impact.
5.3 The energy lost by the pendulum during the breakage of the specimen is the sum of the following:
5.3.1 Energy to initiate fracture of the specimen;
5.3.2 Energy to propagate the fracture across the specimen;
5.3.3 Energy to throw the free end (or ends) of the broken specimen (“toss correction”);
5.3.4 Energy to bend the specimen;
5.3.5 Energy to produce vibration in the pendulum arm;
5.3.6 Energy to produce vibration or horizontal movement of the machine frame or base;
5.3.7 Energy to overcome friction in the pendulum bearing and in the indicating mechanism, and to overcome windage (pendulum air drag);
5.3.8 Energy to indent or deform plastically the specimen at the line of impact; and
5.3.9 Energy to overcome the friction caused by the rubbing of the striker (or other part of the pendulum) over the face of the bent specimen.
5.4 For relatively brittle materials, for which fracture propagation energy is small in comparison with the fracture initiation energy, the indicated impact energy absorbed is, for all practical purposes, the sum of factors 5.3.1 and 5.3.3. The toss correction (see 5.3.3) may represent a very large fraction of the total energy absorbed when testing relatively dense and brittle materials. Test Method C shall be used for materials that have an Izod impact resistance of less than 27 J/m (0.5 ft·lbf/in.). (See Appendix X4 for optional units.) The toss correction obtained in Test Method C is only an approximation of the toss error, since the rotational and rectilinear velocities may not be the same during the re-toss of the specimen as for the original toss, and because stored stresses in the specimen may have been released as kinetic energy during the specimen fracture.
5.5 For tough, ductile, fiber filled, or cloth-laminated materials, the fr......
因為測試在高速下進行,雜質、氣泡、微小裂紋等影響極大,所以對測定前后試樣情況須?懸臂梁沖擊試驗機主要用于硬質塑料、增強尼龍、玻璃鋼、陶瓷、鑄石、電絕緣材料等非金屬材料沖擊韌性的測定。懸臂梁沖擊試驗機符合GB/T1843《塑料懸臂梁沖擊試驗方法》以及ISO180、GB/T2611、JB/T8761標準的要求。...
電子式沖擊試驗機采用高精度編碼器技術,具有精度高、穩定性好和測量范圍大等特點,數字化測量顯示沖擊強度及平均值,能量損失自動修正,打印試驗報告等功能。該機符合國際標準ISO180—1992《塑料—硬質材料懸臂梁沖擊強度的測定》;國家標準GB/T1843—1996《硬質塑料懸臂梁沖擊試驗方法》、機械行業標準JB/T8761—1998《塑料懸臂梁沖擊試驗機》。...
本懸臂梁沖擊試驗機主要用于硬質塑料、增強尼龍、玻璃鋼、陶瓷,鑄石、電絕緣材料等非金屬材料沖擊韌性的測定。是化工行業、科研單位、大專院校,質量檢測等部門理想的測試設備。本沖擊試驗機是采用微計算機技術研制生產的智能化數顯式沖擊試驗機。先進之處在于它能夠自動修正摩擦和風阻所帶來的能量損失,擺脫了能量由于阻力影響而進行修正的數值圖表。(試樣斷裂后擺錘剩余能量的檢測和能量損失的修正在沖擊過程中一次完成)。...
符合國際標準ISO180—1992《塑料—硬質材料懸臂梁沖擊強度的測定》;國家標準GB/T1843—1996《硬質塑料懸臂梁沖擊試驗方法》、機械行業標準JB/T8761—1998《塑料懸臂梁沖擊試驗機》。...
Copyright ?2007-2022 ANTPEDIA, All Rights Reserved
京ICP備07018254號 京公網安備1101085018 電信與信息服務業務經營許可證:京ICP證110310號