• <li id="ccaac"></li>
  • <table id="ccaac"><rt id="ccaac"></rt></table>
  • <td id="ccaac"></td>
  • <td id="ccaac"></td>
  • ASTM E2587-14e1
    使用統計流程控制中控制圖的標準實踐規程

    Standard Practice for Use of Control Charts in Statistical Process Control


     

     

    非常抱歉,我們暫時無法提供預覽,您可以試試: 免費下載 ASTM E2587-14e1 前三頁,或者稍后再訪問。

    您也可以嘗試購買此標準,
    點擊右側 “購買” 按鈕開始采購(由第三方提供)。

    點擊下載后,生成下載文件時間比較長,請耐心等待......

     

    標準號
    ASTM E2587-14e1
    發布
    2014年
    發布單位
    美國材料與試驗協會
    替代標準
    ASTM E2587-15
    當前最新
    ASTM E2587-16(2021)e1
     
     
    適用范圍

    4.1 This practice describes the use of control charts as a tool for use in statistical process control (SPC). Control charts were developed by Shewhart (2) in the 1920s and are still in wide use today. SPC is a branch of statistical quality control (3, 4), which also encompasses process capability analysis and acceptance sampling inspection. Process capability analysis, as described in Practice E2281, requires the use of SPC in some of its procedures. Acceptance sampling inspection, described in Practices E1994, E2234, and E2762, requires the use of SPC so as to minimize rejection of product.

    4.2 Principles of SPC—A process may be defined as a set of interrelated activities that convert inputs into outputs. SPC uses various statistical methodologies to improve the quality of a process by reducing the variability of one or more of its outputs, for example, a quality characteristic of a product or service.

    4.2.1 A certain amount of variability will exist in all process outputs regardless of how well the process is designed or maintained. A process operating with only this inherent variability is said to be in a state of statistical control, with its output variability subject only to chance, or common, causes.

    4.2.2 Process upsets, said to be due to assignable, or special causes, are manifested by changes in the output level, such as a spike, shift, trend, or by changes in the variability of an output. The control chart is the basic analytical tool in SPC and is used to detect the occurrence of special causes operating on the process.

    4.2.3 When the control chart signals the presence of a special cause, other SPC tools, such as flow charts, brainstorming, cause-and-effect diagrams, or Pareto analysis, described in various references (4-8), are used to identify the special cause. Special causes, when identified, are either eliminated or controlled. When special cause variation is eliminated, process variability is reduced to its inherent variability, and control charts then function as a process monitor. Further reduction in variation would require modification of the process itself.

    4.3 The use of control charts to adjust one or more process inputs is not recommended, although a control chart may signal the need to do so. Process adjustment schemes are outside the scope of this practice and are discussed by Box and Luceño (9).

    4.4 The role of a control chart changes as the SPC program evolves. An SPC program can be organized int......

    周錦帆:說到寫書,應以曹徐陸周為序

    、實驗室認可、質量控制圖中相關統計方法和質量控制措施;還介紹了分析測試文獻資源和檢索方法、Excel在分析測試數據統計應用,并以較多實例解讀數理統計方法在分析實踐及實驗室管理應用。...

    統計過程控制在策劃和實施階段注意事項

    3.合理選擇統計工具?根據控制對象(質量特性或支配性要素)類型、特點及數據性質,確定采用適宜計量型或計數型控制圖。4.建立質量控制管理制度首先,建立關鍵質量控制管理制度,明確職責范圍、管理要求、控制方法、異常處理流程。其次,制訂關鍵工序質量控制作業指導書(或操作規程、操作卡片),必須嚴格執行作業標準。...

    LIMS系統有哪些功能模塊?

    12、實驗室質量控制   實驗室質量控制是為將分析測試結果誤差控制在允許限度內所采取控制措施。傳統意義上,我們通過實驗室內質量控制和實驗室間比對來進行實驗室質量控制。在實驗室內,質量控制一般包括空白實驗、校準曲線核查、儀器設備標定、平行樣分析、加標樣分析以及使用質量控制圖等。...

    質量控制圖正確理解和應用

    Shewhart質控圖對影響要素是全部控制, 即只要其中某一質量要素發生變化影響到質量時,它都能反映,故又稱全圖;但影響質量某一要素非檢測人員所能控制,檢測人員只能控制其所能控制質量要素,這種非全控制圖稱選圖,選圖是我國學者張公緒教授提出,己廣泛應用于工業、郵電、醫療衛生部門,在臨床檢驗工作也有著廣泛用途。  ...





    Copyright ?2007-2022 ANTPEDIA, All Rights Reserved
    京ICP備07018254號 京公網安備1101085018 電信與信息服務業務經營許可證:京ICP證110310號

  • <li id="ccaac"></li>
  • <table id="ccaac"><rt id="ccaac"></rt></table>
  • <td id="ccaac"></td>
  • <td id="ccaac"></td>
  • 床戏视频