• <li id="ccaac"></li>
  • <table id="ccaac"><rt id="ccaac"></rt></table>
  • <td id="ccaac"></td>
  • <td id="ccaac"></td>
  • ASTM E2848-13
    報告光伏非集中器系統性能的標準試驗方法

    Standard Test Method for Reporting Photovoltaic Non-Concentrator System Performance


    ASTM E2848-13 發布歷史

    ASTM E2848-13由美國材料與試驗協會 US-ASTM 發布于 2013。

    ASTM E2848-13 報告光伏非集中器系統性能的標準試驗方法 的最新版本是哪一版?

    最新版本是 ASTM E2848-13(2023)

    ASTM E2848-13 發布之時,引用了標準

    • ASTM D6176 用電阻溫度傳感器測量表面大氣溫度的標準實施規程
    • ASTM E1036 使用參考電池的非集中器地面光伏模塊和陣列的電氣性能的標準測試方法
    • ASTM E1040 非集中陸地光電壓參照電池的物理特性
    • ASTM E1125 用平面光譜法校準初級非濃縮器的地面光電基準電池的標準試驗方法
    • ASTM E1362 非濃縮器光電二次標準電池校準的標準試驗方法
    • ASTM E2527 地面聚光光伏組件和系統在自然陽光下電性能的標準試驗方法
    • ASTM E772 有關太陽能轉換的標準術語
    • ASTM E824 從基準校驗場地輻射強度計的傳輸方法
    • ASTM E927 光伏器件電性能試驗用太陽模擬器的標準分類
    • ASTM E948 用參考電池對非聚能器的地面光電電池電性能的試驗方法
    • ASTM E973 測量光電裝置與光電參考電池之間光譜不協調參數的測試方法
    • ASTM G138 用標準輻射源校準分光輻射譜儀的標準試驗方法
    • ASTM G167 用日射計校準日射計的標準試驗方法
    • ASTM G173 參考太陽光譜輻照度的標準表:37°傾斜面上的直法線和半球面
    • ASTM G183 日射強度計、日射強度儀和紫外線輻射計現場使用的標準實施規程
    • IEEE 1526-2003 測試獨立光伏系統性能的推薦規程
    • IEEE 1547-2003 有電力系統的互連配電資源

    ASTM E2848-13的歷代版本如下:

    • 2023年 ASTM E2848-13(2023) 光伏非集中器系統性能報告的標準試驗方法
    • 2018年 ASTM E2848-13(2018) 報告光伏非集中器系統性能的標準測試方法
    • 2013年 ASTM E2848-13 報告光伏非集中器系統性能的標準試驗方法
    • 2011年 ASTM E2848-11e1 報告光伏非集中器系統性能的標準試驗方法
    • 2011年 ASTM E2848-11 報告光伏非集中器系統性能的標準測試方法

     

    5.1 Because there are a number of choices in this test method that depend on different applications and system configurations, it is the responsibility of the user of this test method to specify the details and protocol of an individual system power measurement prior to the beginning of a measurement.

    5.2 Unlike device-level measurements that report performance at a fixed device temperature of 25°C, such as Test Methods E1036, this test method uses regression to a reference ambient air temperature.

    5.2.1 System power values calculated using this test method are therefore much more indicative of the power a system actually produces compared with reporting performance at a relatively cold device temperature such as 25°C.

    5.2.2 Using ambient temperature reduces the complexity of the data acquisition and analysis by avoiding the issues associated with defining and measuring the device temperature of an entire photovoltaic system.

    5.2.3 The user of this test method must select the time period over which system data are collected, and the averaging interval for the data collection within the constraints of 8.3.

    5.2.4 It is assumed that the system performance does not degrade or change during the data collection time period. This assumption influences the selection of the data collection period because system performance can have seasonal variations.

    5.3 The irradiance shall be measured in the plane of the modules under test. If multiple planes exist (particularly in the case of rolling terrain), then the plane or planes in which irradiance measurement will occur must be reported with the test results. In the case where this test method is to be used for acceptance testing of a photovoltaic system or reporting of photovoltaic system performance for contractual purposes, the plane or planes in which irradiance measurement will occur must be agreed upon by the parties to the test prior to the start of the test.

    Note 1—In general, the irradiance measurement should occur in the plane in which the majority of modules are oriented. Placing the measurement device in a plane with a larger tilt than the majority will cause apparent under-performance in the winter and over-performance in the summer.

    5.3.1 The linear regression results will be most reliable when the measured irradiance, ambient temperature, and wind speed data during the data collection period are distributed around the reporting conditions. When this is not the case, the reported power will be an extrapolation to the reporting conditions.

    5.4 Accumulation of dirt (soiling) on the photovoltaic modules can have a significant impact on the system rating. The user of this test may want to eliminate or quantify the level of soiling on the modules prior to conducting the test.

    5.5 Repeated regression calculations on the same system to the same RC and using the same type of irradiance measurement device over successive data collection periods can be used to monitor performance changes as a function of time.

    5.6 Capacity determinations are power measurements and are adequate to demonstrate system completeness. However, a single ca......

    ASTM E2848-13

    點擊查看大圖

    標準號
    ASTM E2848-13
    發布
    2013年
    發布單位
    美國材料與試驗協會
    替代標準
    ASTM E2848-13(2018)
    當前最新
    ASTM E2848-13(2023)
     
     
    引用標準
    ASTM D6176 ASTM E1036 ASTM E1040 ASTM E1125 ASTM E1362 ASTM E2527 ASTM E772 ASTM E824 ASTM E927 ASTM E948 ASTM E973 ASTM G138 ASTM G167 ASTM G173 ASTM G183 IEEE 1526-2003 IEEE 1547-2003

    ASTM E2848-13相似標準


    推薦

    天合光能系統檢測中心獲得國家CNAS實驗室認可資格

      近日,天合光能系統檢測中心獲得中國合格評定認可委員會CNAS實驗室認可資格。這是繼2010年產品檢測中心獲得組件領域實驗室認可后,天合光能在系統檢測領域也獲得了國家級評審機構認可。至此,天合光能成為制造領域首家涵蓋全領域實驗室認可企業,體現了國家評審機構對天合光能檢測能力高度認可,及天合光能檢測中心試驗數據準確性、可靠性和公正性。  ...

    組件封裝用背板EVA膠膜檢測儀器介紹

    Labthink蘭可為行業質檢單位以及生產企業提供以下光組件封裝用背板EVA膠膜檢測儀器:1、太陽能背板材料以及EVA膠膜水蒸氣透過率檢測設備:C390H水蒸氣透過率測試系統,基于紅外法水分分析傳感器測試原理,參照ASTM F1249,ISO 15106-2標準設計制造,為中、高水蒸氣阻隔性材料提供寬范圍、高效率水蒸氣透過率檢測試驗。...

    拓展應用:試驗機在產業中應用

    什么是發電系統 (photovoltaic generation system),簡稱(photovoltaic),是指利用光電池生伏特效應,將太陽輻射能直接轉換成電能發電系統設施核心是太陽能電池板。目前,用來發電半導體材料主要有:單晶硅、多晶硅、晶硅及碲化鎘等。由于近年來各國都在積極推動可再生能源應用,產業發展十分迅速。...

    組件封裝用背板EVA膠膜檢測儀器

    1、太陽能背板材料以及EVA膠膜水蒸氣透過率檢測設備:C390H水蒸氣透過率測試系統,基于紅外法水分分析傳感器測試原理,參照ASTM F1249,ISO 15106-2標準設計制造,為中、高水蒸氣阻隔性材料提供寬范圍、高效率水蒸氣透過率檢測試驗。可專用于太陽能背板材料以及EVA膠膜材料進行水蒸氣阻隔性能檢測評價。...


    誰引用了ASTM E2848-13 更多引用





    Copyright ?2007-2022 ANTPEDIA, All Rights Reserved
    京ICP備07018254號 京公網安備1101085018 電信與信息服務業務經營許可證:京ICP證110310號

  • <li id="ccaac"></li>
  • <table id="ccaac"><rt id="ccaac"></rt></table>
  • <td id="ccaac"></td>
  • <td id="ccaac"></td>
  • 床戏视频