• <li id="ccaac"></li>
  • <table id="ccaac"><rt id="ccaac"></rt></table>
  • <td id="ccaac"></td>
  • <td id="ccaac"></td>
  • 實驗方法> 生物化學技術> 化學生物學實驗技術>原位雜交組織化學概述

    原位雜交組織化學概述

    關鍵詞: 原位雜交 組織化學 概述來源: 互聯網

    相關專題 ?

    一、核酸分子 雜交技術 1961年Hall開拓了液相核酸雜交技術的研究,其基本原理是利用核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵的形成,出現穩定的雙鏈區,形成雜交的雙鏈。自此以后,由于分子生物學技術的迅猛發展,特別是70年代末到80年代初,分子克隆、質粒和噬菌體DNA的構建成功,核酸自動合成儀的誕生,大大豐富了核酸探針的來源,新的核酸分子雜交類型和方法不斷涌現。按其作用方式可大致分為固相雜交和液相雜交兩種:液相雜交是指參加反應的兩條核酸鏈都游離在溶液中,而固相雜交是將參加反應的一條核酸鏈固定在固體的支持物上常用的有硝酸纖維素濾膜,其它如尼龍膜、乳膠顆粒和微孔板等),另一條參加反應的核酸鏈游離在溶液中。固相雜交有菌落原位雜交 (colony in situ hybridization)、斑點雜交法(Dot blot)、Southern印跡雜交(Southern blot)、Northern印跡雜交( Northern blot)和組織原位雜交(Tissue in situ hybridization),即原位雜交組織化學技術和原位雜交免疫細胞化學技術。液相分子雜交技術包括吸附雜交、發光液相雜交、液相夾心雜交和復性速率液相分子雜交等。 二、原位雜交組織化學技術的由來及發展 原位雜交組織(或細胞)化學技術簡稱原位雜交(In situ hybridization),如上所述,屬于固相核酸分子雜交的范疇。但它區別于固相核酸分子雜交中的任何一種核酸分子雜交技術。菌落雜交系細菌 裂解釋放出DNA,然后進行雜交。Southern印跡雜交法是以鑒定DNA中某一特定的基因片段,而Norhtern印跡雜交法是用以檢測某一特定的RNA片段的。它們都只能證明該病原體、細胞或組織中是否存在待測的核酸而不能證明該核酸分子在細胞或組織中存在的部位。1969年美國耶魯大學Gall和Pardue首先用爪蟾核糖體基因探針與其卵母細胞雜交,確定該基因定位于卵母細胞的核仁中。與此同時,Buongiorno– Nardelli和Amaldi, John及其同事等相繼利用同位素標記核酸探針進行了細胞或組織的基因定位,從而創造了原位雜交細胞或組織化學技術。Orth(1970)應用3H標記的兔乳頭狀瘤病毒cRNA探針與兔乳頭狀瘤組織的冰凍切片進行雜交,首次用原位雜交檢測了病毒DNA在細胞中的定位,但當時的工作多采用冰凍組織切片或培養細胞,探針均采用同位素標記。 由于同位素標記探針具有放射性既污染環境,又對人體有害,且受半衰期限制等缺點,科學工作者們開始探索用非放射性的標記物標記核酸探針進行原位雜交。Bauman(1981)等首先應用熒光素標記cRNA探針做原位雜交,然后用熒光顯微鏡觀察獲得成功。Shroyer(1982)報道用2,4二硝基苯甲醛(DNP)標記DNA探針,使該DNA探針具有抗原性,然后用兔抗DNP的抗體來識別雜交后的探針,最后經免疫過氧化物酶的方法來定位雜交探針。這兩種方法至今仍有采用,但因敏感度不夠高,應用不夠普遍。 Pezzella(1987)創建了用磺基化DNA探針來做細胞或組織原位雜交的方法,其基本原理是使DNA探針的胞嘧啶堿基磺基化,利用單克隆抗體識別磺基化探針,再通過免疫組化方法顯示結合的單克隆抗體,從而對雜交結合的探針進行定位。本法的優點是磺基化DAN探針標記簡便,不需作缺口平移標記,敏感度也較高。但自生物素和高辛標記探針技術建立后,已有取而代之的趨勢。生物素標記探針技術是Brigat(1983)首先建立的,它利用生物素標記的探針在組織切片上檢測了病毒DNA,通過生物素與抗生物素結合,過氧化物酶-抗過氧化物酶顯示系統顯示病毒DNA在細胞中的定位。生物素標記探針技術目前已被廣泛應用,特別是在病毒學和病理學的臨床診斷中。這種生物素標記技術又叫酶促生物素標記技術。另一種叫光促生物素標記核酸技術,該技術是用光敏生物素(Photobiotin)標記核酸。目前應用的光敏生物素有乙酸鹽和補骨脂素生物素,它們都是由三個部分組成:光敏基團、連結臂和生物素(圖20-1)。在強光下,不需酶反應,光敏生物素的光敏基團即可與核酸中的堿基相結合。光敏生物素標記核酸,方法簡單,靈敏度也不低,但標記效率不高,每100~150個堿基才能標記一個生物素,對于短的基因探針特別是寡核苷酸探針不宜使用,以免因標記數過少而影響靈敏度(Forster et al 1985)。 近年來,地高辛(Digoxigonin)標記技術引起科技工作者的極大興趣。Boeringer Mannhem Bio-chemisca于1987年將地高辛標記的有關試劑及藥盒投放市場。和其它非放射性標記物一樣,地高辛較放射性標記系統安全,方便、省時間。同時在敏感性和質量控制方面比生物素標記技術要優越,可以檢測出人基因組DNA中的單拷貝基因。地高辛標記法顯示的顏色為紫藍色(標記堿性磷酸酶-抗堿性磷酸酶顯色系統),有較好的反差背景。 核酸探針根據標記方法的不同可粗略分為放射性探針和非放射性探針兩類。根據探針的核酸性質不同可分為DNA探針、RNA探針、cDNA探針、cRNA探針和寡核苷酸探針等。DNA探針還有單鏈DNA(Single stranded, ssDNA)和雙鏈DNA(Double stranded, dsDNA)之分(詳見十九章)。早期應用的主要是DNA探針,繼之Temin在70年代研究致癌RNA病毒時制備了cDNA探針(complementary DNA),其基本原理是以RNA為模板,經逆轉錄酶(reverse transcriptase)又稱為RNA指導的DNA聚合酶催化產生的。

    推薦方法

    Copyright ?2007 ANTPedia, All Rights Reserved

    京ICP備07018254號 京公網安備1101085018 電信與信息服務業務經營許可證:京ICP證110310號

  • <li id="ccaac"></li>
  • <table id="ccaac"><rt id="ccaac"></rt></table>
  • <td id="ccaac"></td>
  • <td id="ccaac"></td>
  • 床戏视频